Lock-in from the perspective of innovation/transitions theory

Tim Foxon
Sustainability Research Institute
School of Earth and Environment
University of Leeds, UK
Outline

• Insights from understanding technological change
 • History of technology/innovation (Hughes, David)
 • Evolutionary/complexity economics (Arthur, Nelson)
 • Institutional economics (North, Pierson)
 • Socio-technical transitions (Rip and Kemp, Geels)
• Path dependence and Lock-in
 • Lock-in of technologies
 • Co-evolution leading to lock-in of techno-institutional systems, as emergent property
• Implications for geoengineering
Technological lock-in

• Technological change in path dependent:
 • specific sequences of events
 • specific timing of outcome-shaping events
 • similar starting conditions leading to a wide range of possible outcomes
 • small events that can have large consequences
• Lock-in
 • increasing returns to adoption (positive feedback) can lead to lock-in of incumbent technologies
 • Many examples: QWERTY keyboard, light-water nuclear reactors, VHS video recorders, Microsoft software
Increasing returns (positive feedbacks) to adoption of technologies (Arthur, 1989)

• Scale economies
 • spread fixed costs over increasing volume
• Learning effects
 • experience gained reduces unit costs
• Adaptive expectations
 • adoption reduces uncertainty, as users gain confidence in quality, performance, longevity
• Network or co-ordination effects
 • network benefits increase with more users
Institutions

• Institutions are ‘social rule systems’
• Formal social rules:
 • legislation
 • economic rules
 • contracts
• Informal constraints:
 • social conventions
 • rules of behaviour
Increasing returns for institutions (North, 1990)

- High set-up or fixed costs
- Learning effects for organisations
- Co-ordination effects
- formal constraints, such as contracts
- informal constraints, e.g. shared knowledge
- Adaptive expectations
- institutional framework reduces uncertainties
Lock-in of political institutions (Pierson, 2000)

- Collective action
- highly dependent on actions of others
- High density of institutions
- learning, co-ordination and expectations
- Asymmetries of power
- reinforcing current power structures
- Complexity and opacity of politics
- mistakes difficult to rectify
Co-evolution of technological and institutional systems

- Lock-in of technological and institutional systems
- Interacting increasing returns to adoption of technologies and institutions
- Techno-institutional system or complex becomes locked-in
- Carbon lock-in (Unruh, 2000)
- Carbon-based energy system has become locked-in through coevolution of fossil fuel based technologies and supporting institutional rules
- Business models and user practices also co-evolve (Foxon, 2011; Hannon et al., 2013)
Electricity generation techno-institutional system

Source: Unruh (2000)
Electricity generation technoinstitutional system

- Institutional factors
- satisfy increasing demand
- reduce unit price
- liberalise markets in 1990s
- Feed back into technological system
- ‘dash for gas’, rapid expansion of gas-fired generation
- Reinforces institutional drivers
- Lobbying to reduce ‘interference’ in markets
Implications for geoengineering

• Alternative pathways for a low carbon transition

• Low carbon options: energy efficiency, renewables, nuclear, carbon capture and storage (CCS)

• Options that attempt to mitigate the consequences of carbon emissions, such as CCS and geoengineering options, could reinforce dominance of fossil fuel based energy system

• Role of adaptive expectations

• Could even serious discussion of geoengineering discourage investment in low carbon options

• Challenge for low carbon policy

• Investment needed to keep options open in face of uncertainty, but at some point, some options have to be closed off